

Progress Related to Mo-99 Separation, Precipitation Prevention, and Clean-Up for SHINE System

A.J. Youker, D. C. Stepinski, M. Kalensky, K.J. Quigley, D.L. Bowers, V.S. Sullivan, M.E. Bennett, M.A. Brown, S.D. Chemerisov, and G.F. Vandegrift

Argonne National Laboratory

Mo-99 2013 Topical Meeting Chicago, IL April 1-5, 2013

Potential Domestic Mo-99 Producer

- Morgridge Institute for Research (MIR) and SHINE Medical Technologies
- D/T-accelerator-driven process
- SHINE (Subcritical Hybrid Intense Neutron Emitter)
- LEU uranyl sulfate solution
- Titania sorbents to separate and recover Mo-99
- Catalyst required to prevent precipitation
- Sulfate-to-nitrate conversion followed by UREX for clean-up

Mo-99 Separation

- Titania (110 μm) for initial recovery column
- Titania (40 μm) for concentration column
- Solution and column kept at 80°C
- ~90 100% Mo recovery achieved when strip solution heated to 70°C and stripping velocity reduced

Plant-Scale Column Designs

Column	Volosity	Column	Column	Sorbent	ΔΡ	Mo-99 /
	Velocity (cm/min)	Length	th Volume Mass	Mass		Sorbent
ID (cm)	(CIII/IIIIII)	(cm)	(L)	(kg)	(atm)	Mass (Ci/g)
10	27.8	20	1.6	2.04	0.63	1.90
12	19.3	14	1.6	2.06	0.30	1.89
15	12.4	9	1.6	2.07	0.13	1.88
20	7.0	5	1.6	2.04	0.04	1.90

- Designs assume 100 150 g-U/L, 200 250 L, 2 h loading time, Mo concentration ~ 10^{-6} M
- Feed loaded in up-flow direction
- Column washed up-flow with 5 10 CVs of acid and water
- Mo eluted down-flow with 20 30 CVs of 0.1 M NaOH at 70°C
- ~22 48 L of Mo-strip solution will be generated
- Concentration column will be added to decrease strip volume

Strip Volume Minimization

- Titania sorbent (40 μm) will be used for the concentration column
- 0.1 M NaOH will be used to strip Mo from the initial recovery column
- Strip solution would be acidified using HNO₃
- Langmuir parameters were determined for a pH 2 and pH 5 solution – much better adsorption at pH 2
- 1 M NH₄OH will be used to strip Mo from the concentration column
- Strip volume can be reduced to < 1 L

Concentration column following a 2 h recovery of Mo from 130 g-U/L uranyl sulfate solution

Plant-Scale Concentration Column Design

Sorbent	Target Mo loading (%)	g Column IE (cm)	Velocity (cm/min)	MTZ _{0.1%} (cm)	Column length (cm)	Column volume (mL)	Sorbent weight (g)	ΔP (atm)	Mo-99 / sorbent mass (Ci/g)	Strip volume (mL)
TiO ₂	99.9	4	31.2	1.1	1.5	19	24	0.32	163	377

Process Conditions

Solution	NaNO ₃ , pH 2
Mo concentration	2.34e-2 mM
Volume	23.52 L
loading time	60 min
flow rate	392 mL/min
loading temperature	80 °C
density	0.972 g/mL
viscosity	0.355 ср

Down-Scale Results (0.66 cm ID x 1.5 cm L)

Stream	% Mo-99
Effluent	0.3
0.01 M HNO ₃ Wash	0.01
H ₂ O wash	0.03
1 M NH ₄ OH strip	89

Downscale Column Experiments at the VDG

- Direct down-scale column experiments of VERSE plant-design
- Solution irradiated prior to and during column loading
- 0.2 2 L uranyl sulfate solution heated to 80°C
- Mo found in effluent or not recovered in strip Mo reduction
- N₂ purge to dilute H₂ and O₂ from water radiolysis

VDG Column Results

	Solution Dose Rate	Column Dose Rate	% Mo in	%Mo in	% Mo	
Experiment Date	(kRad/h)	(kRad/h)	Effluent	Washes	Recovered	Acid Wash
2/14/2013	64.3	15.5	0.9	0.3	100	0.5 M H ₂ SO ₄
2/27/2013	74.1	17.8	0.7	15	92	1 M H ₂ SO ₄
3/6/2013	67.8	16.3	0.6	11	100	1 M H ₂ SO ₄
3/12/2013	68.8	16.6	0.2	2	95	0.5 M H ₂ SO ₄

- Solution loaded onto column while under constant source of radiation
- Washes and elution performed using AKTA LC system
- No evidence of changes in Mo redox chemistry due to radiolysis at low dose rates (~70 kRad/h)
- Acid wash concentrations varied to remove Pu, which was added as a spike to some of the solutions

Pu-239 Results from VDG Column Experiments

		% Pu-239	%Pu-239	% Pu-239	% Pu-239	% Pu-239	% Mo in
	% Pu-239	H_2SO_4	H ₂ O	NaOH	H ₂ O	on	H ₂ SO ₄
$H_2SO_4(M)$	Effluent	Wash	Wash #1	Strip	Wash #2	Column	Wash
0.5	12.2	9.6	3.0	22.6	0.3	52.3	0.1
1	19.4	58.8	10.4	1.9	0.5	9.0	8

- Column feed solutions spiked with Pu-239 before irradiation
- Samples analyzed via alpha spectroscopy
- Spent columns do not have to be GTCC waste if Pu kept low
- 0.5 M H₂SO₄ left ~50% Pu on column
- 1 M H₂SO₄ left <10% Pu on column
- 1 M H₂SO₄ changed Mo chemistry....premature elution of Mo
- It becomes a balancing act want to remove Pu but cannot afford to lose Mo product
- Finding optimum conditions is still underway
- Dose rates much less than what is expected for SHINE

Radiolytic Gas Generation and Peroxide Catalysis Setup at VDG

- Uranyl sulfate solutions irradiated for 5 h with dose rates of ~ 3400 MRad/h
- Expected doses to SHINE solution 1 h (360 Mrad) and 5 days (43,200 MRad)
- Dose applied to most solutions at VDG equivalent to ~ 2 days of operation

Precipitation in Uranyl Sulfate Samples

- Precipitate dissolved after solution was boiled for a few minutes
- 88 g-U/L went to 63.5 g-U/L final pH
 0.64 after 1.712E+08 Gy (235 min)
- 298 g-U/L went to 262 g-U/L final pH
 0.58 after 2.033E+08 Gy (270 min)
- Uranyl peroxide not observed during irradiation of uranyl nitrate solutions exposed to same doses
- HNO₂ by-product of nitrate
 radiolysis catalyzes H₂O₂ destruction

Peroxide Formation and Decomposition

$$UO_2^{++} + H_2O_2 \rightarrow UO_2O_2 + 2H^+$$

R1 ·OH +·OH
$$\rightarrow$$
 H₂O₂

R2
$$H_2O_2 + e^-_{aq} \rightarrow OH + OH^-$$

R3 H⁺ + HO
$$_{2}^{-}$$
 \rightarrow H₂O₂

R4
$$H_2O_2 + OH_1 \rightarrow HO_2^- + H_2O$$

Thermal decomposition

$$2 H_2O_2 \rightarrow 2 H_2O + O_2$$

Known Catalytic decomposition by addition of metal salts Fe, Cu, Ag, Ni, Mn, Ti, I, Cr

Catalysts tested at Argonne using VDG

FeSO₄, Fe₂(SO₄)₃, CuSO₄, KI, Zr, 304 stainless steel turnings

Catalytic Destruction of Peroxide

		Energy				μmoles	μmoles	H_2 to
Catalyst	UO ₂ SO4	Deposited		Initial	Final	H_2	O_2	O_2
	(g-U/L)	(MRad)	Precipitation	pН	pН	Produced	Produced	Ratio
0.99 mg/L								
FeSO ₄	124	23100	NO	1.4	N.A.	239	163	1.47
Cu(II), 62.5								
mg-Cu/L	126	22000	NO	1.4	N.A.	406	286	1.42
KI, 9.94								
mg-I ⁻ /L	126	22800	NO	1.4	N.A.	206	147	1.40
Fe(III) 0.96								
mg/L	126	22800	NO	1.4	N.A.	566	369	1.53
304 Stainless								
Steel	126	22400	NO	1.4	N.A.	261	223	1.17
Zirconium								
Metal	298	23200	YES	1.0	N.A.	1112	460	2.42

- All catalysts prevented precipitation of uranyl peroxide except Zr
- H₂ to O₂ ratios kept below 2 except for Zr
- 2 mL uranyl sulfate solutions inserted into dry wells during H₂O irradiations at linac
- Micro-SHINE will be used to test the effects of fission tracks on peroxide formation/destruction

H₂:O₂ Ratios with and without Precipitation

- Precipitation occurred for solutions analyzed in top graph
- No precipitation observed for solutions analyzed in bottom graph
- Ratio much larger for samples where precipitation occurred

Target-Solution-Cleanup Flowsheet

Sulfate-to-Nitrate Conversion

- Procedure has been developed using a mixture of Sr(NO₃)₂ and Ba(NO₃)₂ with heat and stirring for nitrate-to-sulfate conversion
- 50 mL uranyl sulfate solution is maximum volume tested and characterized
- A 1.05:1 Sr:SO₄²⁻ ratio and 0.05:1 Ba:SO₄²⁻ ratio are required to keep Ba below RCRCA levels of 100 mg/L and SO_4 ²⁻ below 0.01 M
- Sr(NO₃)₂ added first heated to 60°C with agitation for 30 minutes
- Ba(NO₃)₂ added next heated to 60°C with agitation for 60 minutes
- Solution is filtered using a 1 mm Nuclipore filter
- 70 mg/L Ba and 0.005 M SO₄²⁻ remain in the filtrate after precipitation

Sr/Ba Sulfate precipitate before rinsing

Clean-Up with Irradiated DU foils

- 6 g irradiated DU foil used as a spike for a 250-mL uranyl sulfate solution
- 50 mL was used for nitrate-to-sulfate conversion and UREX batch contacts
- ~ 1 mCi Mo-99 produced
- γ,n reaction on U-238 to produce U-237 1000X more U-237 than other fission products
- Gamma counting complex and saturated with U-237
- Qualitative results rather than quantitative

- 1. Most if not all of the alkaline earths (Ba and Sr) partition to the precipitate.
- 2. Most of the transition metals and iodine partition to the filtrate.
- 3. Essentially all of the uranium partitions to the filtrate.
- 4. A large fraction of the rare-earth elements partition to the precipitate.
- 5. Iodine could not be stripped from organic solvent...mostly I_2 .

Iodine Removal from UREX Solvent

- \sim 50% radioiodine partitioned into a 30% TBP/n-dodecane phase from an aqueous phase of 1 M HNO₃ and 10⁻⁶ M stable I₂
- Solvent extraction and liquid chromatography techniques have been utilized to help remove I₂ from UREX solvent
- Stripping radio-iodine from loaded organic phase proved to be insufficient when using 1 M HNO₃, Na₂CO₃, hydroxylamine, or H₂O
- NaOH showed some slight stripping capabilities
- Hydrazine was the most effective at removing iodine but may not be best choice
 - Hydrazine mechanism of action reduction of I₂ to I⁻
- Activated charcoal and AMBERCHROM CG116 resin exhibited reasonable separation capabilities as a stationary phase
- More work needs to be done in this area

Future Clean-Up Experiments

- Future experiments will more closely mimic SHINE conditions
- Stage 2 test will use a small volume of micro-SHINE solution and the solvent-extraction portion will be performed in a centrifugal contactor bank
- More realistic UREX data will be obtained
- Stage 3 test will use irradiated mini-SHINE solution for the clean-up process
- Stage 2 and 3 experiments will provide important data regarding iodine behavior when generated in solution versus in a foil at the linac

Concluding Remarks

- Plant-scale recovery and concentration columns have been designed and validated on a small-scale
- Low dose rates do not change Mo redox chemistry
- High dose rates lead to the formation and precipitation of uranyl peroxide – catalyst needed to prevent this
- Optimization for Pu removal from titania column is underway
- Procedure for sulfate-to-nitrate conversion has been developed and demonstrated using irradiated DU foils as a spike
- Conversion and UREX tests using centrifugal contactors are planned for solutions spiked with micro-SHINE and mini-SHINE solutions
- Process for iodine removal from UREX solvent is needed reduction of I₂ to I⁻

Acknowledgements

Work supported by the U.S. Department of Energy, National Nuclear Security Administration's (NNSA's) Office of Defense Nuclear Nonproliferation, under Contract DE-AC02-06CH11357.